On the Natural Imprint Function of a Graph
نویسنده
چکیده
In this paper, some characterizations of median and quasi-median graphs are extended to general isometric subgraphs of Cartesian products using the concept of an imprint function as introduced by Tardif. This extends the well-known concepts of medians in median graphs as well as imprints in quasi-median graphs. We introduce absolute C-median graphs in analogy to absolute retracts, and derive a connection with the canonical isometric embedding of graphs into Cartesian products. Absolute C-median graphs strictly include classes of irreducible graphs and absolute (weak) retracts as well as many medianlike classes, such as weakly median graphs, pre-median graphs, and weakly modular graphs. New characterizations of quasi-median graphs and of median graphs are obtained along the way. Finally, we propose a conjecture on amalgamation procedure for absolute C-median graphs, and prove the fixed box theorem for this class modulo the conjecture.
منابع مشابه
ACCURACY OF INTRAOPERATIVE FROZEN SECTION DIAGNOSIS AND TOUCH IMPRINT CYTOLOGY: STUDY ON 1000 CONSECUTIVE CASES
Frozen section and touch imprint cytology are important diagnostic procedures for surgeons during operation and must be accurate if the patient is to receive maximum benefit. To assess the accuracy of intraoperative pathologic consultation including frozen section and touch imprint cytology during a five year period (1995- 2000), a retrospective survey of 1000 consecutive cases of frozen s...
متن کاملBounds on the restrained Roman domination number of a graph
A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...
متن کاملA comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کاملImprint cytology: a simple, cost effectiveness analysis for diagnosing Helicobacter pylori, in west of Iran
Background: This study was to determine the sensitivity, specificity, positive predictive value (PPV), negative predictive values (NPV) and agreement between two methods of the stained gastric imprint cytology smears and stained gastric specimen biopsy mucosal methods for detection of H. pylori. Methods: Air-dried imprint smears of gastric biopsies from 330 patients were stained by the Grunwal...
متن کاملSome Results on the Maximal 2-Rainbow Domination Number in Graphs
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
متن کاملSome New Results On the Hosoya Polynomial of Graph Operations
The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 23 شماره
صفحات -
تاریخ انتشار 2002